
BCWorkshop2024 TuDelft Fraunhofer

#BCworkshop

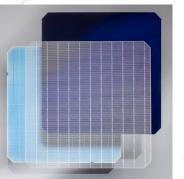
12th workshop on

Back contact solar cell and module technology

December 4-5, 2024 Delft, the Netherlands

Thanks to our sponsors for their support

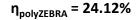
Highlights first day BC Workshop 2024


BC Workshop 2024 - Day 1 Agenda - A few highlights

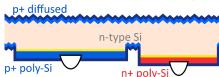
09:00 - 09:20	Conference opening
09:20 - 10:40	S1: Back contact cells & modules in R&D
10:40 - 11:20	Coffee break
11:20 - 12:40	S2: Back contact cells in industry
12:40 - 13:20	Lunch
13:20 - 14:00	Visiting the Green Village
14:00 - 15:20	S3: Materials and tools for BC cell technology
15:20 - 15:50	Coffee break
15:50 - 17:30	S4: Characterization / Outdoor testing / Shading resilience
17:30 - 17:40	End of the first day, reaching X Center @ TU Delft
18:00 - 21:00	Social dinner

S1: Back contact cells & modules in R&D

From 2026, POLO² IBC cells on M10 wafers


 $i\eta_{POLO~IBC} = iV_{oc} \times iFF \times J_{sc} = 26.7\%$

 $η_{POLO \, IBC} = 23.9\% \, (1.0 \, \Omega cm < r_{Ga} < 2.0 \, \Omega cm)$


 $\eta_{POLO\ IBC-target} = 25\%$ (optimized Ag/AI)

 $J_{0,p-poly} = 2.3 \text{ fA/cm}^2 \text{ (in-situ doped LPCVD)}$

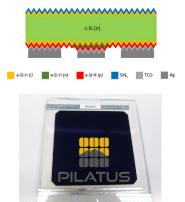
Two different industrial POLO² IBC designs

Potential $\eta_{polyZEBRA} > 25\%$

Transfer results from test structures to cell

Production cost of Cu-polyZEBRA module close to TOPCon

Investigating PVD fabrication route of TBC cells



TMO-based IBC SHJ cell

Unveiled transport mechanisms across novel ETL stack

n = 23.10% (with Cu-plated contacts)

 η_{target} > 24% in the short term

 $\eta = 24.7\%$ (mini-module)

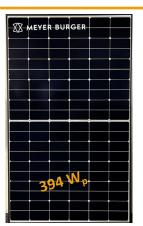
Several times surviving IEC tests

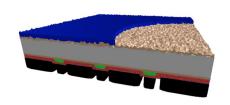
Excellent platform for 3TT devices with $\eta = 29.56\%$ (24.5 cm²)

maxeon

S2: Back contact cells in industry

Currently prototyping Maxeon 7 process with selfaligned micro-trench structure.

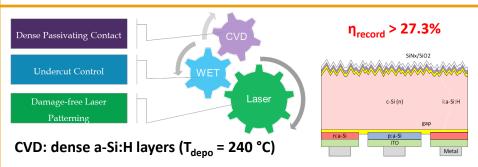

Efficiency loss analysis done for Maxeon 7 and projected for Maxeon 8 (minimal J_0).


 $\eta_{\text{Maxeoon 8}} > 26\%$ (anticipated, with AI metallization)

Largest remaining loss: poor infrared absorption

Several blocks fot TBC cell mass production:

- 1. Bifacial limit, at most 75% in HTBC
- 2. TOPCon in-line upgrade rapidly ($\Delta \eta_{2025} = +0.4\%_{abs}$)
- 3. $\Delta \eta$ negative in case half cut wafers
- 4. Simplified TBC structure with boron diffusion junction but not easy in experiment trial
- 5. Expensive laser and low yield,
- 6. Thermal cycle induced delamination,
- 7. Ag consumption in solder joint.



η > 25%

10 process steps (In-free, 3.3 mg/W_p)

IEC superior reliability

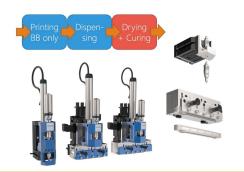
WET: controlling SiNx undercut with KOH + SDBS

LASER: smart combination of sacrificial layers

S3: Materials and tools for BC cell technology

Take Aways for Today

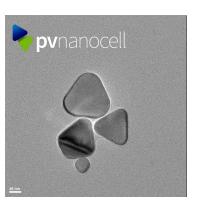
Technology:


- o Reliable Printheads + Nozzle Kits
- Al controlled Process

Key Applications:

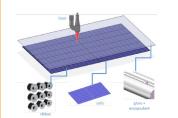
- o Fine Line Dispensing down to <20µm
- o Dots and Intermittent Coating

Strong Partnerships for integration in Cell and Module!



High selectivity of ADE single-side gas-phase etch

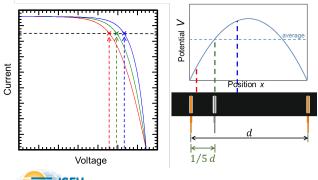
Enables several paths and options for patterning poly-silicon layers



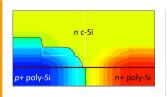
Single-crystal nanoparticles offer superior oxidation resistance

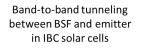
PVN own produces copper nanoparticles (d = 40 nm)

Printing 25-µm wide line with PTP technique


Laser Integrated Bonding for module manufacturing

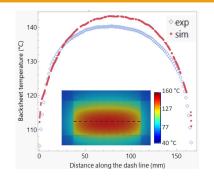
Addressed reliability


 Δ CTM ratio > 0.5% --- Δ P_{mpp} > 4W_p



S4: Characterization / Outdoor testing / Shading resilience

Multi-spectrum spectral responsivity using a LED solar simulator


20% energy yield gain with cells with -0.3 V breakdown voltage and partially shaded for 20% of the time

Measured 7.9% increase in specific yield with IBC cells with -3 V breakdown

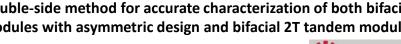
Fakir vs PCB vs Custom chucks

Ideal uniform breakdown can still show high temperature

High $V_r \rightarrow T_{peak}$ increases with power of the substring

Low $V_r \rightarrow T_{peak}$ depends on reverse IV curve

Challenging modelling


High-n solar cells show capacitive behavior during fast sweeps → solar simulators needed with long pulse or steady-state capability

from offline characterization

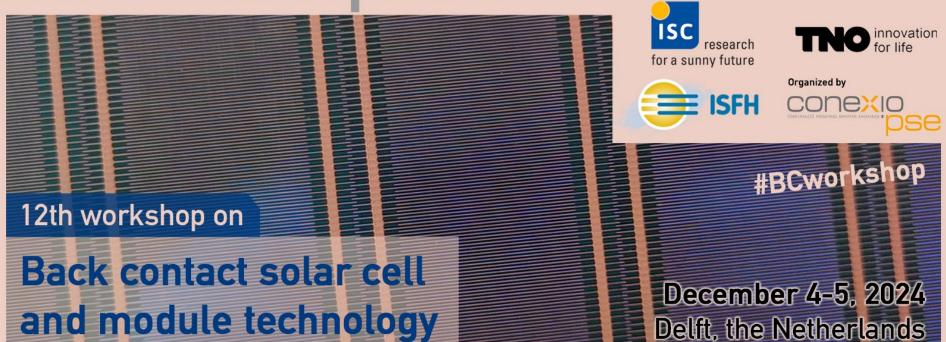
PVK modules are metastable. Sweep times > production cycle times → standardized characterization methods mainly based on MPP and inline characterization can be performed using a controlled offset

Double-side method for accurate characterization of both bifacial modules with asymmetric design and bifacial 2T tandem modules

BC Workshop 2024 - Day 2 Agenda

09:00 - 09:20	Highlights first day
09:20 - 10:40	S5: Novel interconnection technologies for BC moduules
10:40 - 11:20	Coffee break
11:20 - 12:00	Round table 1: Will BC technology be the next big thing?
12:00 - 12:40	Round table 2: Technology challenges in BC technology?
12:40 - 14:00	Lunch
14:00 - 16:15	S6: Industrial BC modules and field applications
16:15 - 16:30	Closing remarks and announcement next BC workshop

Thanks to our sponsors for their support



BCWorkshop2024 TuDelft Fraunhofer

