Low-breakdown-voltage solar cells for shading-tolerant photovoltaic modules

Andres Calcabrini, Paul Procel Moya, Ben Huang, Viswambher Kambhampati, <u>Patrizio Manganiello</u>, Mirco Muttillo, Miro Zeman, and Olindo Isabella

4th of December 2024 BCworkshop 2024

Partial shading

ŤUDelft 2

F

Ţ

One bypass diode per cell

[1]

- + Reduced hot-spot probability
- + Reduced partial shading losses
- Higher cost and complexity

F

Integral bypass diodes

[5] R. Müller, et al, Sol. Mat. 142, (2015)

1. Analyze breakdown mechanism in IBC solar cells

2. Simulation of PV modules with low breakdown voltage solar cells

1. Analyze breakdown mechanism in IBC solar cells

2. Simulation of PV modules with low breakdown voltage solar cells

Low breakdown IBC solar cells

F

ŤUDelft 7

[1] C. Hollemann, et al, *Scien. Rep.* 10, 1-15 (2020)
[2] R. Santbergen, et al, *IEEE JPV* 7, 919-926 (2017)

Ę

Dopant diffusion and effect of varying gap

P. Procel, et al, IEEE JPV 9, 374-384 (2019)

Dopant diffusion and effect of varying gap

Ę

1. Analyze breakdown mechanism in IBC solar cells

2. Simulation of PV modules with low breakdown voltage solar cells

Ţ

Simulation scenario

Delft, Netherlands

Annual DC energy yield

re

Simulated temperature

1. Analyze breakdown mechanism in IBC solar cells

2. Simulation of PV modules with low breakdown voltage solar cells

F

Monitored PV modules

Experimental setup

Delft, the Netherlands

Ę

Daily specific yields

ŤUDelft

18

Conclusions

Band-to-band tunneling between BSF and emitter in IBC solar cells 20% energy yield gain with cells with -0.3 V breakdown voltage and partially shaded for 20% of the time Measured 7.9% increase in specific yield with IBC cells with -3 V breakdown

Thank you for your attention!

Europe

patrizio.manganiello@uhasselt.be

Request your trial version of ASA7: http://asa.ewi.tudelft.nl/ PVMD web-lab: www.tudelft.nl/dutchpvportal International PV Systems Summer School: www.tudelft.nl/pvsss Scan the QR-code to reach our online courses hub