Back-contact workshop, Delft, The Netherlands. December 5th 2024

Module and Interconnection Technology for Zebra IBC Cells

Rik Van Dyck¹, Filip Duerinckx¹, Hamed Javanbakht¹, Daniel Tune², Nicolas Guillevin³, Jan Kroon³, Timea Bejat⁴, Erik Eikelboom⁵, Martijn Meereboer⁶ IBC4 EU

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No.101084259

IBC4 EU

IBC4EU Horizon Europe project

- 1. Module technologies for IBC cells
- 2. Study and selection of encapsulation material
- 3. Module reliability testing
- 4. Technology evaluation
- 5. Industrial implementation
- 6. Conclusions

Three technologies evaluated:

Asbenchmark:

• Tabbing stringing

Modular foil-based interconnections:

- Conductive backsheet approach
- 3D Multi-Ribbon interconnection

Tabbing and stringing interconnection

- Mature technology (TRL 9) used as a benchmark
- Multi-busbar connections using SnPb solder
- Can achieve high bifaciality
- Busbarless and negative gap connections are areas of development

Conductive backsheet

- Initially developed for MWT cells, now also used for IBC
- Patterned Cusheetas conductor
- Cusheet is connected using conductive paste on cell busbars
- Rearperforated encapsulant as selective insulator

Glass

IBC cells

frontencapsulant

perforatedencapsulant

Low-temperature paste

Cu connection sheet

backsheet with

1. Module technology description 3D Multi-Ribbon interconnection

• 3D multi-ribbon foil as conductor

Module fabrication:

- Lay-up phase
- Lamination cycle

3D Multi-Ribbon interconnection

- Solder coating reflows
- Polymer encapsulant melts

2. Study and selection of encapsulation material

- Materials
 - Thermoplastic polyolefins (TPO 1-3)
 - Polyolefin elastomer (POE 1-3)
 - EVA as benchmark
- Characterisation of
 - Adhesion strength
 - Coefficient of thermal expansion
 - Optical performance
 - Calorimetric behaviour (DSC)

Results suggest each encapsulant can be considered for further testing

2. Study and selection of encapsulation material

Mini-modules during damp-heat exposure

 Mini-modules with tabbingstringing interconnection to test encapsulant

ſ			
		1	
	· · · · · · · · · · · · · · · · · · ·		

EU-sourced TPO is selected for further testing

Back-Contact Workshop, Delft (NL)

Design of Experiments: common BOM

	Conductive backsheet (TNO)	Conductive backsheet (TNO)Tabbing and stringing (ISC)3 D mult (im					
Frontcover		Glass					
Frontencapsulant	TPO						
Cells	8 half-cells, 6BB½ M6 Zebra IBC Cell						
Interconnection	Low-temperature paste	SnPb-solder	Low-temperature solder				
Rear encapsulant	Rear perforated insulator	TPO	Custom TPO				
Back cover	Whitebacksheet	Transparent Backsheet/Glass	Glass				

Modules were characterised and underwent damp-heatexposure and thermalcycling tests December 5th, 2024 Back-Contact Workshop, Delft (NL)

- Bifaciality (P_{mpp}):
 Tabbing-stringing 84%
 - 3D Multi-Ribbon 79% ٠
 - CBS0% •
- Half-cut cell orientation was • different for 3D Multi-Ribbon*

*N. Chen et all. (2022) Mitigating cut losses in IBC solar cells

December 5th, 2024

Damp-heat exposure

Thermal Cycling CBS

TC0

TC400

December 5th, 2024

3. Module reliability testing

Thermal Cycling tabbing and stringing

TC400

TC0

Process optimisation solves improperly soldered ribbons

Back-Contact Workshop, Delft (NL)

Thermal Cycling 3D multi-ribbon

Different cell orientations caused cleaving issues (lasering through both junctions)

- Initial cell micro-cracks propagated during lamination and TC
- Use of thinner solder-coating proven not to be reliable

Previous tests on full-cell modules passed 600 TC and 15 HF cycles

TC200

TC400

3. Module reliability testing 3D multi-ribbon busbarless connections

IBC4 EU

- First tests on direct finger soldering bus barless connection
- No degradation after 200 Thermaland 10 Humidity-freeze cycles

4. Technology evaluation

Technology	Applicability (mono- and/or bifacial)	Multi-BB or BBless		Performance	Bitaciality	Justainability	Peliability	esion fr	zedonn Cost effect	iveness TR
TS	Mono- and bifacial	Multi-BB	reference level (0) 9							
		Busbarless	0	+	+	0	0	+	7-9	
CBS	Monofacial	Multi-BB	+	NA	0	0	+	-	6	
LTCS*	Bifacial	Multi-BB	0	0	0	0	+	0	5	
3D	Mono- and bifacial	Multi-BB	+	-	0	0	+	0	4-5	
		Busbarless	+	-	+	0	+	+	4	

- *LTCS = TNO's light-transmitting conductive substrate solution • Utility scale PV: tabbing-stringing
- Integrated and agri PV: CBS and 3D Multi-Ribbon

5. Industrial implementation

Industrial implementation of low-stress tabbing-stringing by FuturaSun

Industrial implementation of CBS for lightweight modules by Energyra

Today at 14:00 - 14:20 by G. Coletti:

Opportunities and challenges of back-contact PV technology

Today at 15:00 - 15:20 by M. Kalden: Advantages of back contact technology in North-West Europe

6. Conclusions

EU-sourced TPO can be implemented to yield modules with high reliability (damp-heat and thermal cycling)

No difference in reliability for glass-glass and glass-backsheet was observed

Three module technologies are being developed in IBC4EU:

- IBC Tabbing-stringing (TRL9)
 - Industrial implementation of low-stress TS by FuturaSun
 - Test with Cumetallisation, negative gap and busbarless connections are ongoing
- Conductive backsheet (TRL6)
 - Industrial Implementation in lightweight modules by Energyra
 - Bifacial solutions under development by TNO (see V. Rosca)
- 3 D m ulti-ribbon (TRL 4-5)
 - Under development by imec
 - Cell metallisation design should be customised
- December 5th, 2 First results on BBless connections are showd Workshop, Delft (NL)

Thank you

Project Partners

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No.101084259 21