

Lightweight Conductive Backsheet Modules

Marco Kalden & Marcello Passaro

What will we present?

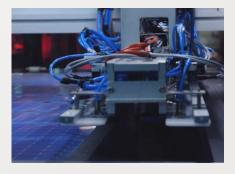
Who, why and how of Energyra

Rooftop Opportunities in the EU

MWT to IBC for kWh's

How Energyra DynamIQ IBC modules are modeled to squeeze out every electron/kWh for Rooftop Applications to facilitate the energy transition and tackle the climate crisis

ENERGYRA[®] History



• Energyra started in 2018.


- Relaunched in 2020 (Energyra Europe BV)
- Dutch Made and Solar knowhow
- Close collaboration with EU research institutes
- Participant in SolarNL National Growth Fund & IBC4EU

Modern Facility

minimal manual labour, maximum quality

- Nameplate Capacity
 100MWp
- Fine-tuned to
 130MWp
- IBC upgrade
 140MWp

Our major goals and ambitions

Commitment to eco-friendly production processes

Use of recyclable materials (PET)

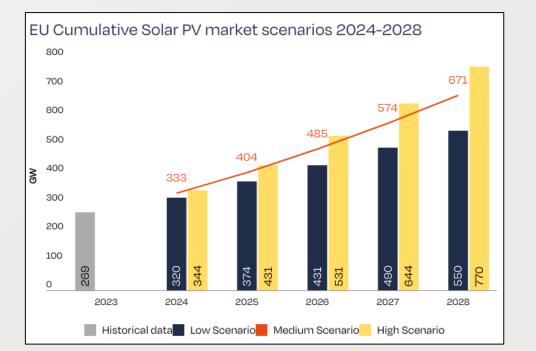
PFAS and lead free

Antimony-free components

Initiatives to reduce CO₂ footprint and prioritize local sourcing

Strategic importance of local knowledge and expertise (international developments)

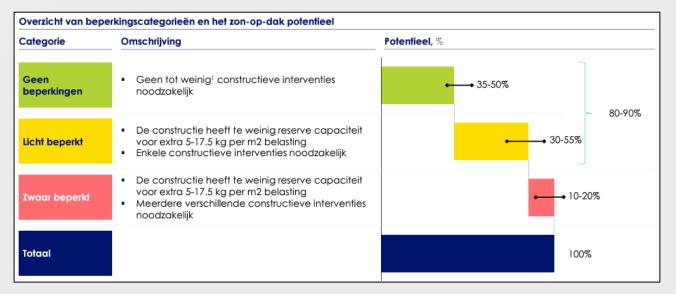
Full traceability and transparency in our manufacturing processes and procurement (CSRD/ESG)


Tailor made solutions

Light weight panels

Rooftop potential

all about return


Rooftop Projects are most promising market in the EU

<u>270GW in 2024 to total 671 GW by 2028 in</u> <u>Europe (~59-60% rooftop)</u>

Case Study: The Netherlands 10-55% rooftops

are not viable because of weight bearing issues

Lightweight for C&I rooftops with back contact technology

C&I Rooftop Requirements

- Maximum kWp/m2 or kWh/m2
- Weight restriction <5 kg/m2
- Low degradation

=

- Low carbon footprint
- 100% recyclable
- Shading resistance

Traditional PV modules

- 122 cell half cut PV modules Wp too low per m2
- 144/72 cell glass-glass/foil modules too heavy (> 5kg/m2)
- X 3% degradation year 1, and 0.5% degradation EOL
- **X** >~500 kg/CO2eq
- **X** 98% recyclable (PFAS free)
- - X Shading Resistance (high voltage breakdown)

A wide variety of use cases

ENERGYRA | all about return

Mobile Integrated Mobile Solution


Zero Emission Zone Solution

Off-grid solutions

Bespoke Architectural Designs

Large-scale Mobile Solution

DynamIQ lightweight panel

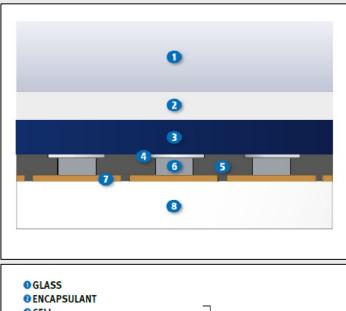
Key Features:

- Ultralight design 7.3kg (4.29 kg/m2, 60% weight reduction)
- Robust and fully recyclable
- Lower NOCT/NMOT
- ~230* 500 kg/CO2eq

Globally first IEC61215/61730 certified framed polymer light weight panel

Applications:

- Ideal for rooftops with limited load capacity
- Mobile and specialized applications


Inside CBS Back-contact

low stress manufacturing

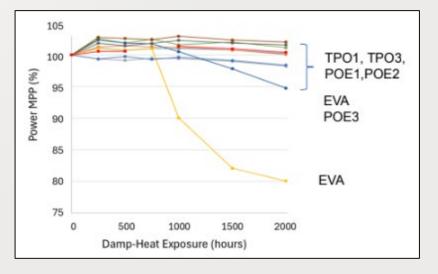
- Minimal Cell handling
- Low-stress & low temperature process
- Lead-free & low temperature solder paste
- Very low resistive losses for an improved CTM
- Reproducible automated process
- Minimal human handling during process

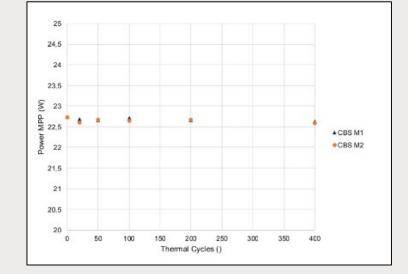
@ENCAPSULANT	
CELL	
OREARSIDE METALLIZATION	
SREAR PERFORATED INSULATOR	
G CONDUCTIVE ADHESIVE / SOLDE	R PASTE
PATTERNED COPPER FOIL	- CONDUCTIVE BACKSHEET
8 BACKSHEET	CONDUCTIVE BACKSHEET

DynamIQ (IBC) roadmap

Current Situation

- MWT PERC +
- - 0.36%/K Temp. Coefficient
- 365 Wp 375 Wp
- 3% Year 1, 0.5% Year 2 EOL
- 7.3 kg lightweight
- 1.7m2 (220 W/m2)


Roadmap xBC - 0.26%/K temp.coefficient 390 - 405 Wp 1% Year 1, 0.35% Year 2 - EOL \sim 7.3 kg lightweight (4.3 kg/m2) ~1.7 m2 (238 W/m2) High shading resistance

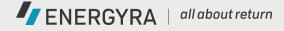

Opening 10% more the rooftop C&I market that was considered not viable for a PV system due to mechanical rooftop constraints (kg/m2) to more kWh

ENERGYRA | all about return

A BOM for durability/reliability

Mini Module Pmpp loss after 2000 hours with different encapsulants

Careful consideration for UVID, PID-s/p and interconnect failures as leading rising challenges for some TOPCON/IBC modules



Mini Module Pmpp Loss after 400 cycles of thermal cycling with CBS

Conductive Backsheet Output

Cell inter- connection technologies	Ribbons	Multiwire	Conductive backsheet (CBS)	Shingling	Paving/tiling
Schematic view of cell technologies (full cell)					
Cell-to-module loss (CTM)	3.8%	3.8%	2.4%	2.2%	3.6%
Power density	189 W/m ²	189 W/m ²	202 W/m ²	195 W/m ²	199 W/m ²
Power output ¹	314 Wp	314 Wp	334 Wp	297 Wp ²	314 Wp

Address potential quality issues (mechanical stresses on cells) due to stringing in the event of severe weather events

=

Field Studies of MWT CBS

- Higher efficiency as compared to MBB
 - Better Low-irradiance behavior

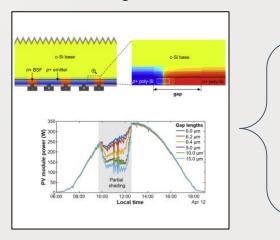
all about return

Lower NMOT

ENERGYRA

F

•



Module	MBB	CBS		
Cell Tech	PERC	MWT PERC		
#Cells	120 half cells	66 full cells		
Interconnection	МВВ	CBS		
m2	1.83 m2	1.77 m2		
Lisbon, PT Yield				
Module Efficiency	+0.9%	+5.6%		
Low Irradiance	0.0%	+1.7%		
NOCT	0.0%	+1.3%		
Combined	+0.9%	+8.6%		

Low voltage breakdown benefits

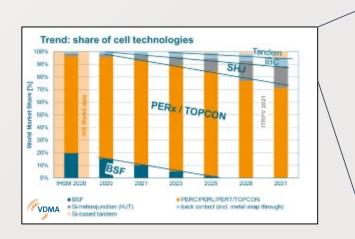
Yield vs Low Voltage Breakdown

=

Shaded Cell Unshaded Cell Shaded cell, without Diode, Hotspot Max Temp Max Temp Panel Type Max Temp Observations Half-cell Ribbon-Severe bubbling, burning of 62 °C (144 °F) > 550 °C (>1022 °F) 153 °C (307 °F) based Back Contact back sheet and encapsulant Half-cell Front Severe bubbling, burning of 58 °C (136 °F) 142 °C (288 °F) > 550 °C (>1022 °F) Contact TOPCon back sheet and encapsulant Significant bubbling, Half-cell HJT 60 °C (140 °F) 162 °C (324 °F) 305 °C (581 °F) discoloration of back sheet and encapsulant Full-cell IBC. No visible or measurable 59 °C (138 °F) 85 °C (185 °F) 78 °C (172 °F) Maxeon 7 impact Full-cell IBC. No visible or measurable 63 °C (145 °F) 104 °C (219 °F) 103 °C (217 °F) Maxeon 6* impact * Although not tested in this latest round of outdoor hotspot testing, Maxeon 3 (IBC) panels offer equivalent protection from damaging

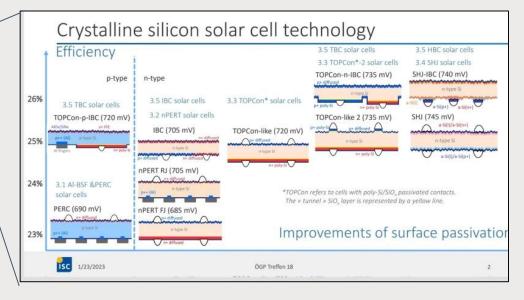
TUDelft VALOE :: CSEM

hotspots. Maxeon can provide additional test results for earlier generation Maxeon 3 panels upon request.


Up to 7.9% more potential yield in specific use cases and lower hotspot temperatures

maxeon

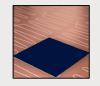
Maxeon Whitepaper on shaded cell temperatures for different technologies


Solar PV Cell Selection for CBS

<u>Selection depending on low voltage breakdown, rooftop application in polymer BOM, machine limitations, metallization, vendor availability and efficiency & degradation profile</u>

ENERGYRA | all about return

=


Lightweight BC technology

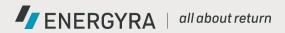
 Local production for responsible and environmental friendly production and developing local knowledge & know how

=

 Opening up to 50% additional rooftop potential

Shift to IBC modules coming with lower temp coefficients, shading resistance, smart BOM selection & w/m2 with focus on kWh

Creating new opportunities in mobile energy and special shapes


F

Any questions, queries, worries, conundrums or headaches?

Kind thanks to all the industry & research partners

martijn.meereboer@energyra.com

