

T-IPV: French contribution to IEA PVPS-T17

Back Contacts cells for VIPV applications: Opportunities & challenges

Bertrand CHAMBION, Fathia KAROUI, Nouha GAZBOUR, Fabrice CLAUDON

BC workshop, Delft, December, 5th

Contents

- Introduction/ VIPV context
- VIPV system performances
 - → Energy & LCA
- VIPV module specs
 - → Back contacts cells opportunities and challenges
- Conclusions
- Perspectives / VIPV next generation

Introduction / VIPV context

VIPV = On board PV production coupled to vehicle energy need

High performance cells Flexible >25%

VIPV

Lightyear 0, Maxeon website

IEA (2024), Electric vehicle stock by mode in the Announced Pledges Scenario, 2023-2035

→ Logical combination of both technologies

VIPV module specs

PV Surface available?

Vehicle integration, Challenges?

Vehicle specifications?

CEA Ines, Renault Zoe with solarization kit

Use case, V2X?

Location?

Annual solar km?

LCA (eq. Kg C0₂)?

End user benefits, ROI?

VIPV performances estimation, modeling methodology

Parameters

ENERGY

CIMATE CHANGE

Inputs -Time series (Ghi)

Monthly solar energy

Distribution of solar irradiance

Use profile

PV peak power

Battery nominal energy

System efficiency

Electrical consumption

Shading losses

Frequency of recharge with the grid

15'

Mathematical model

Energy balance

Battery state of charge steps

Calculations for 365 days

Outputs

- Annual PV energy
- Annual mileage,
- Daily distance covered by VIPV
- Battery state of charge profiles

Balance (kgCO₂-eq scenario)

Avoided impact

Manufacturing balance

PV prod = avoided impact on the grid

Carbon balance manufacturing (x kg CO_2 -eq)

Application on passenger car

Projections in 2030

• **PV**: 1.44 m², 230 W/m²,

• Ageing considered → 0.312 kW at midlife

• Curvature influence: - 8.8% Paris, -6.1% Malaga

• **Battery**: 50 kWh

• **Consumption**: 157 Wh/km

> System efficiency and power thresholds for using PV

• Via 12 V auxiliary battery

• Via 48 V additional battery

Direct charge in main 400V battery

➤ Use profile: home/work (8am-6pm), 5 days per week, 48 weeks per year (12250 km/year)

➤ **Shading losses**: 0 %, 30 % and 49 %

➤ Lifetime :13 years

Paris, France (~average Europe): 293 - 805 km

Optimized Realistic scenario, by 2030,

Paris: 650 km/year (Malaga:1350 km/year)

VIPV system key points

LCA projections and cells specs

- ✓ Technology: PERC+
- ✓ Poly silicon : Germany
- ✓ Lingot / wafer: Norway
- ✓ Module: France (GBS, no frame)
- ✓ Manufacturing: projection in 2030

Low carbon

✓ Life time: 13 years / 160 000 km (commercialized in 2030)

LCA projections on CO₂: Passenger car

Paris: -102 to -2 kg CO2- eq

EUROPE

Average Europe: -39 to 122 kg CO2-eq avoided

190 – 489 kg CO2-eq avoided

Initial passenger car footprint: 6-10 t CO2-eq

[https://doi.org/10.1016/j.rser.2022.112158]

VIPV module specs

From technical survey leaded by TNO -Anna J. Carr and Bonna K. Newman – TNO, 2024 The Netherlands

- 110 experts invited
 - 70 responses (64% response rate)
- · Continents covered:
 - Asia
 - Europe
 - Australia
 - North America

Technical bottlenecks

→ Main interests: efficiency, complexity of manufacturing, appearance

Back contact: <u>aesthetic</u> advantages

Aesthetic for high efficiency modules

BC can easily provide high efficiency module with black or deep blue appearance

Conventional PV has to use black cover (= active surface losses + complex

processes)

Fisker Karma

Back contacts: <u>performances</u> advantage

- Metal free front side on BC cells
 - Theoretical advantage to reach high efficiency cells → key point for VIPV (cf system approach)
- I(V) curve and reverse characteristics

Calcabrini et al., Cell Reports Physical Science 3, 101155. December 21, 2022 ^a 2022 The Author(s). https://doi.org/10.1016/j.xcrp.2022.101155

The wider the gap → The best PV performances but low shading resilience

The smaller the gap → The best shading resilience but lower PV performances

- Benefits and safer under long term shading
 - → next talk, SUPSI

EPJ Photovoltaics 15, 7 (2024) © E. Özkalay et al., Published by EDP Sciences, 2024 https://doi.org/10.1051/epjpv/202400

Towards adjustable shading performances on Cell?

→ Use case oriented

cea

BC workshop. 2025, Dec 5th Delft

Back contacts: integration advantages

- Easier layout on complex surfaces
 - Electrical layout on cells back side, with conductive back sheet, films, ribbons, multi layers...
 - But: Needs of reliable BC interconnection
 - More complex in case of conventional interconnects
- Low profile string for thinner and lighter modules

- BC strings ~ 200µm thinner than conventional
- Thinner front side encapsulation possible

Back contacts: challenges

- Metallic parts on one side
 - Due to CTE mismatch (Cu-Si), Bowing effect on cell or strings
 - Could make processes more complex: dicing/ cutting, handling, P&P on curved surface
 - Could results in stresses on interconnects after lamination.

Compressive stress in interconnects & mechanical tolerancies issues

Conventional vertical structure, MBB

BC technology 1

BC technology 2

after lamination

Conclusions on BC cells for VIPV:

- Power density, good performance under partial shading
- Easy layout possibilities, aesthetic
- Low profile strings structure for lighter modules

- Cells bowing due to CTE mismatch
- Si thinning more complex
- String handling and bussing more complex
- Stresses on interconnects

Perspectives on VIPV / cells:

- VIPV is a complex system, not only PV parts
- No clear end user value (Energy and CO₂) for passenger cars
- → Low carbon manufacturing process needed for cells
- → BC bottom cells for tandem Si/PK is possible but a lot of challenges
- → PK/PK seems to be the solution for CO₂ balance but reliability challenges

Thank you!

T-IPV: French contribution to IEA PVPS-T17

Back Contacts cells for VIPV applications: Opportunities & challenges

Bertrand CHAMBION, Fathia KAROUI, Nouha GAZBOUR, Fabrice CLAUDON

BC workshop, Delft, December, 5th

Contact: bertrand.chambion@cea.fr

