BC Workshop 2025, Delft

Status update on POLO IBC solar cells with glass shadow masks and perspectives beyond

T. Dullweber¹, Y. Larionova¹, P. Jäger¹, V. Mertens¹, R. Brendel^{1,2}, A. K. Dahle³, Ö. Coskun⁴, N. Töre Sen⁴, E. Hoffmann⁵, G. Gregory⁵, M. Centazzo⁵

¹Institute for Solar Energy Research Hamelin (ISFH), Germany ²Leibniz Universität Hannover, Germany ³NorSun AS, Norway ⁴Kalyon PV, Türkiye ⁵EnPV, Germany

POLO IBC process flow with shadow mask

[1] T. Dullweber et al., 8th WCPEC (2022), p. 35 - 39
 [2] V. Mertens et al., 40th EUPVSEC (2023), p. 020015

POLO IBC process flow with shadow mask

[1] T. Dullweber et al., 8th WCPEC (2022), p. 35 - 39
 [2] V. Mertens et al., 40th EUPVSEC (2023), p. 020015

[1] T. Dullweber et al., 8th WCPEC (2022), p. 35 - 39
 [2] V. Mertens et al., 40th EUPVSEC (2023), p. 020015

 V_{oc} 697 / 690 mV = simulated / measured @ ISFH

23.7 / 23.4% = η simulated / measured @ ISFH

733 / 716 mV simulated / measured @ ISFH

25.5/23.9% simulated / measured @ ISFH

Ga wafer resistivity $\rho = 0.4 - 0.8 \Omega$ cm

POLO IBC Quokka 3 simulations

- Reference: 23.9% POLO IBC cell with 0.8 Ω cm Ga wafer measured at ISFH
- Quokka 3:
 - POLO IBC input parameters from [1]
 - τ_{bulk} vs. ρ assumes B-doped wafers after regeneration^{2,3}
- Best POLO IBC efficiencies above 24%
 for wafer resistivity around 1.5 Ω cm
- Norsun and Kalyon did grow Ga ingots with 0.7 – 4.8 Ω cm

POLO IBC lifetime precursors

- τ_{eff} increases linearly with ρ up to 3.0 ms
- Implied efficiency $i\eta = iV_{oc} \times iFF \times J_{sc}$
 - = 740 mV × 86% × 42 mA/cm²

= 26.7%

Ga Cz wafers and industrial surface passivation support 25.5% POLO IBC potential

PECVD-AIO_x/SiN_x

PECVD-AIO_v/SiN_v

interfacial oxide/

n-poly Si

T. Dullweber et al., 41st EUPVSEC (2024), p. 020008

= 740 mV × 86% × 42 mA/cm²

= 26.7%

T. Dullweber et al., 41st EUPVSEC (2024), p. 020008

Ga Cz wafers and industrial surface passivation support 25.5% POLO IBC potential

PECVD-AIO_v/SiN_v

POLO IBC solar cell results

- *J_{sc}* and *FF* trends similar to Quokka 3 simulation
- Best POLO IBC efficiencies for
 - $1 \Omega \text{cm} < \rho < 2 \Omega \text{cm}$
- η gap to best cell and simulations due to much lower J_{sc} . AlO_x/SiN blistering alloys Al "ghost" contacts ?

POLO IBC solar cell results

p-Si interfacial SiO_x Ag Al Ag PECVD *n*-poly-Si Al-p+

SiN_x

- *J_{sc}* and *FF* trends similar to Quokka 3 simulation
- Best POLO IBC efficiencies for
 - $1 \Omega \text{cm} < \rho < 2 \Omega \text{cm}$
- η gap to best cell and simulations due to much lower J_{sc} . AlO_x/SiN blistering alloys Al "ghost" contacts ?

LeTID at 80 °C, 0.5 suns with POLO IBC test wafers and cells

Effective LeTID defect concentration calculated as

$$N_{\rm d}^*(t) = \frac{1}{\tau_{\rm d}(t)} - \frac{1}{\tau_0}$$

- N_d does not dependent on Ga doping concentration
- Confirms hypothesis of recent publication¹ now with more statistics²
- LeTID of POLO IBC cells relatively small (<4% relative)²
- LeTID could be further reduced by lower firing cool down rate^{2,3}

ISFH

23.9%: best POLO IBC cell

- + 0.5%: reducing Ag to n-poly Rc
- + 0.3%: reducing LCO area and J_{0.Al-BSF}

POLO IBC efficiency roadmap to 25%

+ 0.3%: optimized BB and Pad design

25.0% near-term efficiency potential

Recombination at LCO AI-BSF contact limits POLO IBC efficiency < 25.5%

V. Mertens et al., Sol. RRL 8 (2024) 23009196

13

Recombination at LCO AI-BSF contact limits POLO IBC efficiency < 25.5%</p>

For > 26%, AI-BSF contact to be replaced by passivating SiO_x/p-poly-Si contact => POLO² IBC

Industrial passivating SiO_x/p-poly-Si contact **EnPV**

sheet resist. R_{sh} [Ω/sq] chem. oxide therm. oxide 1 therm. oxide 2 annealing temperature T [°C] ; b) sat. curr. den. J_{0e} [fA/cm²] annealing temperature T [°C]

- Wet chemical oxide deposited in industrial wet bench
- In-situ boron-doped p-poly-Si deposited in industrial LPCVD tool
- Best $J_{0,p-poly} = 2.3 \text{ fA/cm}^2$ for
 - R_{sheet} = 160 Ω/sq

ISFH

860

annealing temperature T [°C]

880

900

920

260

240 220

200

180 160

140

120

100

20

15

10

5

800

820

840

sat. curr. den. J_{0e} [fA/cm²]

800

; b)

chem. oxide

therm. oxide 1

840

860 annealing temperature T [°C]

therm. oxide 2

820

sheet resist. R_{sh} [Ω/sq]

Industrial passivating SiO_x/p-poly-Si contact

900

920

880

- Wet chemical oxide deposited in industrial wet bench
- In-situ boron-doped p-poly-Si deposited in industrial LPCVD tool
- Best $J_{0,p-poly}$ = 2.3 fA/cm² for R_{sheet} = 160 Ω/sq
- Optimized p-poly recipe with reduced spread 4 \pm 0.5 fA/cm²

🔆 EnPV

Universität Hannover

15

SABC cell development with EnPV

- Novel Self Aligned IBC cell design "SABC" by EnPV jointly developed at ISFH
- SiO_x/p-poly-Si deposition see previous slide
- SABC design utilizes undercut from chemical etching to separate sputtered n-poly layer polarities
- First SABC cell protoype obtains 20.2% efficiency which is subject to continuous improvement
- EnPV targets SABC commercialization with industrial partners

Industrial POLO² IBC solar cell development at ISFH

- In 2018, ISFH developed a 26.1% lab-type POLO² IBC cell with poly-Si layer doping by ion implantation¹
- Now, ISFH starts to develop an industrial POLO² IBC process flow including
 - Full-area SiO_x/p-poly-Si deposition, see previous slide
 - Full-area SiO_x/n-poly-Si deposition (LPCVD or PECVD)
 - Laser-structuring and etching of both poly-Si layers
 - Patent pending
- First test structure and IBC cell results very promising
- Industry partners are welcome to join us !

ISFH SolarTeC: Replacing old M2 wafer size tools with new state-of-the-art M10 tools

ISFH

Funding provided by
 State of Lower Saxony and
 Federal Ministry of Economics

Status 2024: Up to 15 years old tools for M2

- Inline and Batch Wet Chemistry from 2011, M2
- Diffusion Furnace from 2010, M2
- LPCVD Furnace from 2015, M2
- PECVD from 2022, M2 G12
- Screen Printing from 2016, M2

```
Throughput ca. 100 Wafer / h
```

Rebuilding till 2026: New tools for ≥ M10 wafer size

- Inline and Batch Wet Chemistry: New, \geq M10
- Diffusion Furnace : New, \geq M10
- LPCVD Furnace: New, ≥ M10
- **PECVD** : New Graphite boats, \geq M10
- Screen Printing : New, ≥ M10

Throughput ≥ 300 Wafer / h

- Calculated POLO IBC implied efficiency $i\eta = iV_{oc} \times iFF \times J_{sc} = 26.7\%$
- Best POLO IBC efficiencies for 1.0 Ω cm < ρ < 2.0 Ω cm
- Best POLO IBC cell presently with 23.9%. 25% efficient POLO IBC cells targeted by optimizing Ag and AI metallization
- Maximum LeTID of POLO IBC cells < 4%rel. LeTID N_d does not depend on Ga doping concentration
- In-situ doped LPCVD p-poly passivating contact with $J_{0,p-poly} = 2.3$ fA/cm²
- Two different industrial POLO² IBC cell designs in development at ISFH
- From 2026, POLO² IBC cells on M10 wafer size at ISFH SolarTeC

the State of Lower Saxony and by our industry partners.

• Funding was provided by the European Union of the IBC4EU project, the German

Federal Ministry for Economic Affairs and Climate Action of the Olivia project, by

on the basis of a decision

by the German Bundestag

Gemany

NorSun

centrotherm

RENA

Thank you for your attention !

