

Status and Further Developments of polyZEBRA Cell Technology

Valentin D. Mihailetchi, Jonathan Linke, Florian

Buchholz, Joris Libal, Christoph Peter, Jan Hoß,

Vaibhav Kuruganti, Saman Sharbaf Kalaghichi, Jan

Lossen, Lejo Joseph

Outline

- Motivation
- polyZEBRA a low cost TBC technology
 - Process flow
 - Efficiency status
 - Further performace improvements
 - Cost consideration
 - Alternative process route
- Summary

Back Contact Market Share

- SunPower (Maxeon Technology): Cu plating, Module Eta ≤ 23.0%
- AIKO (ABC technology): Cu plating/Screen printing, Module Eta ≤ 24,8%
- Longi (Hi-MO X6): p-type TBC, Module Eta ≤ 23.3%
- LG (NeON R technology): no longer in production!

M. Fischer et al., "International Technology Roadmap for Photovoltaics (ITRPV) 2023 Results," 15th Edition (2024)

Our cell concepts with polysilicon

polyZEBRA process Flow

Key features:

- Laser-induced mask ablation (4.)
- Laser-induced dopant activation (8.)
- No single-side etching required
 → Compatible with all poly-Si deposition techniques (5./9.)
- Screen-print metallization Ag/Cu^[3] (12.)
 [3] N. Chen et al., Solar RRL 7 (2022)

J. Linke et al., EUPVSEC (2024)

Certified Efficiency 24.12%

Loss analysis and further efficiency improvements

- Quokka3 three-dimensional modelling of polyZEBRA cell
 - with input optical, electrical, and geometrical data from experimental cell
- Unit cell design:

Simulation of current best cell

- Experiment-based input parameters
- Exceptions:
 - τ_{bulk} : Match simulated V_{oc} to measured cell precursor iV_{oc}
 - $J_{0,met,(n) \text{ poly-Si}} = 50 \text{ fA/cm}^2$
 - $J_{0,met,(p) poly-Si}$: Match simulated V_{oc} to measured cell V_{oc}
- Baseline simulation results:

	η (%)	V _{oc} (mV)	J _{sc} (mA/cm²)	FF (%)
Certified cell	24.12 ± 0.36	709.5 ± 3.0	41.4 ± 0.4	82.04 ± 0.90
Simulation baseline	24.14	709.0	41.33	82.38

J. Linke et al., EUPVSEC (2024)

Baseline input parameters			
Wafer size	M6		
#BB	6BB		
$ au_{bulk}$	3 ms		
Cell pitch	800 μm		
W _{base}	290 μm		
W _{emi}	360 μm		
W _{gap}	75 μm		
J _{0,pass,(n) poly-Si}	1 fA/cm ²		
J _{0,pass,(p) poly-Si}	10 fA/cm ²		
J _{0,pass,gap/front}	13 fA/cm ²		
J _{0,met,(n)} poly-Si	50 fA/cm ²		
J _{0,met,(p)} poly-Si	500 fA/cm ²		
R _{sheet,(n) poly-Si}	55 Ωcm		
R _{sheet,(p) poly-Si}	175 Ωcm		
R _{sheet,gap/front}	490 Ωcm		
ρ _{c,(n) poly-Si}	$0.9 \text{ m}\Omega \text{cm}^2$		
ρ _{c,(p) poly-Si}	$2.8 \text{ m}\Omega \text{cm}^2$		

Simulation of current best cell

• Power Loss Analysis (PLA)

Main optimization topics:

- Front side passivation → p+ diffusion profile, passivation stack
- Bulk lifetime → better cleaning, gettering?
- Rear pattern \rightarrow increase emitter fraction
- p+ poly passivation and metallization → reduce J0pas, J0met, rhoC

Optimization of front side & gap passivation

- Front side & gap ≈ 60% of total solar cell surface
 - \rightarrow Excellent surface passivation required

Solution:

- Shallow boron diffusion with low surface concentration
- Improved PECVD-AlOx, pALD-Al2O3 passivation

Optimization of front side & gap passivation

• Modelling prediction:

Results on lifetime test structures

Optimization of p+ poly-Si passivation

• Post-deposition treatment of tunnel oxide reduces surface recombination

- Average on local test structures:
 - $J_{0,pass,(p) poly-Si} = (1.9 \pm 0.4) fA/cm^2$

J. Linke et al., EUPVSEC (2024)

Optimization of p+ poly-Si passivation

Tunnel oxide thickness and p+ poly-Si annealing temperature optimization

This work was funded by the German Federal Ministry for Economic Affairs and Energy within the research project "HOBIT" (No. 03EE1121B)

Optimization of p+ poly-Si metallization

- Improved Ag screen printing and firing:
 - Co-optimization of JOpas, JOmet and contact resistance (rhoC) for both p- and n-doped poly-Si

• Results obtained on test structures:

 $J_{0,met,(p) \text{ poly-Si}} \leq 100 \text{ fA/cm}^2$

 $rhoC \leq 1.5 \ m\Omega cm^2$

Funded by the European Union

The BURST project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101146684

Firing recipe

Simulated Cell Efficiency Potential

• Based on experimental data on test structures

Cost considerations

Process equipment relative to TOPCon

- + 2x Laser (similiar to SE)
- + PECVD-SiO2+a-Si(i)
- + Extra small HF batch
- No inline tools required
- = Short BCl3 instead of annealing
- + Single load AlOx
- + Extra screen printing step
- = LECO under investigation

Cost considerations

Cost breakdown – cell process (cost/Wp)

-1\$ct/wp n 25% 24.5% OPCON HI

- yield lossnet wafer
- metal pastes
- isolation pastes
- disposal
- parts & other
- liquids & material
- gases
- utility
- labour (machines & administration)
- facility equipment & operation
- process equipment (depr. & int. rate)

- → Higher CAPEX mainly due to need for extra lasers (pessimistic scenario)
- → Cu paste costs assumed @300\$/Kg

Alternative process route

polyZEBRA (PECVD/LPCVD)

TOPCon IBC (PVD)

Key processes:

- PECVD or LPCVD a-Si deposition for doped poly-Si
- Laser ablation and laser dopant activation for poly-Si structuring

Key processes:

- PVD a-Si sputtering for doped poly-Si layers
- Laser ablation for poly-Si structuring

Alternative process route

TOPCon IBC (PVD)

Key processes:

- Only one tunnel oxide / a-Si deposition step
- PVD inline single side sputtering (by industry leader VA tool)
- laser ablation for poly-Si patterning
- Co-annealing for n+ and p+ poly-Si

Bundesministerium für Wirtschaft und Klimaschutz

- Certified champion cell efficiency: **24.12%**
- Cell efficiency potential from experiment-based simulations: >25%
- Next steps: Transfer results from test structures to the cell
- Production cost of Cu-polyZEBRA module at scale close to TOPCon
- Alternative fabrication route of TBC cells using PVD inline sputtering of a-Si layers under development

© ISC Konstanz e.V. V.D. Mihailetchi et al., Back Contact Workshop, Delft, 2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No.101084259

Thank you for your attention