

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Understanding the electron transport mechanisms in MoO_x-based layer stack for application in simplified IBC-SHJ solar cells

K. Kovačević, Y. Zhao, P. Procel, L. Cao, L. Mazzarella, O. Isabella

4th of December 2024 Delft, The Netherlands BCworkshop 2024

Silicon heterojunction (SHJ) solar cells

Simple processing and controlable high shunt resistance?

ŤUDelft 2

H. Lin, et al., *Nat. Energy*, **8**, 789 (2023)
 H. Wu, et al., *Nature*, **635**, 604 (2024)
 A. Tomasi, et al., *Nat. Energy*, **2**, 17062 (2017)
 D. Lachenal, bifiPV Workshop, Zhuhai, China (2024)

Alternative material choice

• η = 23.83% FBC-SHJ solar cell with ~2 nm MoO_x as HTL ^[4]

Potentially faster processing of blanket layer

Novel ETL with (n)nc-Si:H and MoO_x^[2, 5]

[1] A. Tomasi, et al., *Nat. Energy*, 2, 17062 (2017)
 [2] K. Kovačević, et al., *Prog. Photovolt. Res. Appl*, (2024)
 [4] L. Cao, et al., *Prog. Photovolt. Res. Appl*, 31, 1245 (2022)
 [3] L. Gerling, et al., *Sol. Energ. Mater. Sol. Cells*, 145, 109 (2016)
 [5] K. Kovačević, et al., *To be submitted*

Working principle of the electron transport layer (ETL) stack

Charge transfer in conduction band and no recombination junction

n-type c-Si

- Optimization of electron transport layer (ETL) stack
- Understanding of charge carrier collection
 - Effect of temperature
 - Interface analysis

TUDelft

 $\eta > 23\%$

[1] L. Mazzarella, et al., *Prog. Photovolt. Res. Appl*, **29**, 391 (2020)
[2] L. Cao, et al., *Prog. Photovolt. Res. Appl*, **31**, 1245 (2022)

ETL contact stack evaluation

Experimental evaluation of passivation and transport

Plasma treatment (PT) SiH₄, H₂, CO₂^[2]

and plasma treatment with boron (PTB) SiH_4 , H_2 , CO_2 , B_2H_6 ^[2, 3]

(*n*)nc-Si:H thickness

TUDelft 7 All FBC-SHJ solar cells feature ITO TCO and screen-printed Ag contact

[1] Y. Zhao, et al., Sol. Energ. Mater. Sol. Cells, 219, 110779 (2021)

- [2] L. Cao, et al., Prog. Photovolt. Res. Appl, 31, 1245 (2022)
- [3] L. Mazzarella, et al., Prog. Photovolt. Res. Appl, 29, 391 (2020)

ETL contact stack evaluation

Improved FF from

(n)nc-Si:H/MoO_x

• Overall improvement with PTB and lower sensitivity to (*n*)nc-Si:H thickness

TUDelft 8

*Based on results of high-resolution transmission electron microscopy **TUDelft** 10 (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis

Future optimization towards $\eta > 24\%$

- Passivation enhancement
- (*n*)nc-Si:H improvement
- Double layer anti-reflection coating
- Metal grid redesign for higher bifaciality

Conclusion

- Optimization of electron transport layer (ETL) stack
- Understanding of charge carrier collection
 - Effect of temperature
 - Interface analysis

13

TUDelft

Thank you for your attention!

Contact

K.Kovacevic@tudelft.nl

Request your trial version of ASA7: http://asa.ewi.tudelft.nl/ PVMD web-lab: www.tudelft.nl/dutchpvportal International PV Systems Summer School: www.tudelft.nl/pvsss Scan the QR-code to reach our online courses hub

