IBC SOLAR CELLS: THE NEXT TECHNOLOGY NODE

David Smith Dec 4, 2024

© 2024 Maxeon Solar Technologies, Ltd.

GROWTH OF PV INDUSTRY

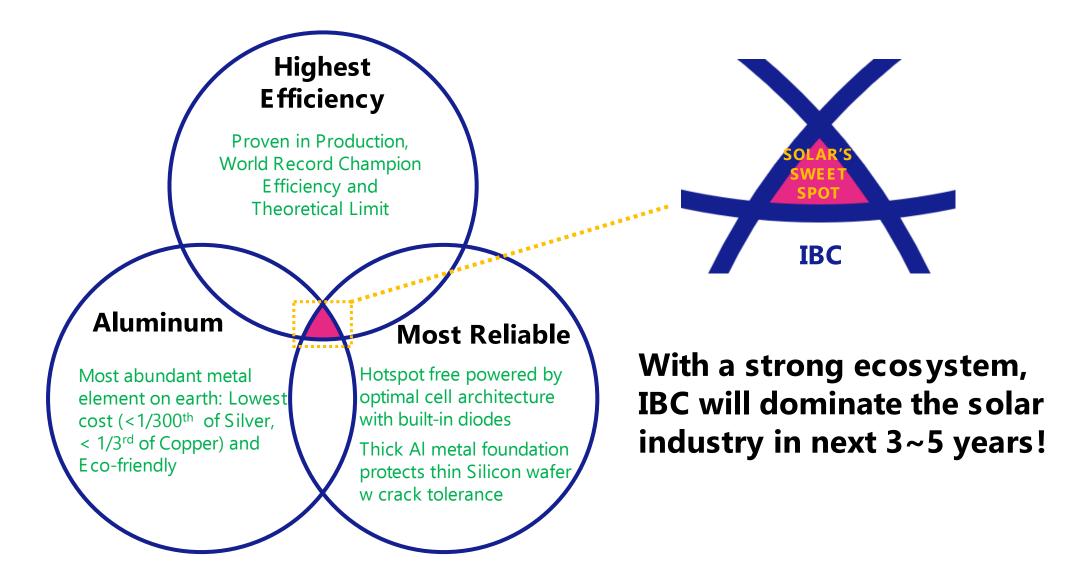
- □ Global use of energy = 170,000 TW-hr
- Current PV share = 7 % of electricity markets
- For 2000 kWhr/kW typical capacity factor, 85 TW is need to power the planet.
- □ Assume 25 year product replacement cycles
- Sustainable annual PV market in the 2-4 TW range.

Global capacity in GW Wind Solar 2000 1500 1000 2012 2014 2016 2018 2020 2022 2024 2010 EMBER Source: IEA Renewables 2024

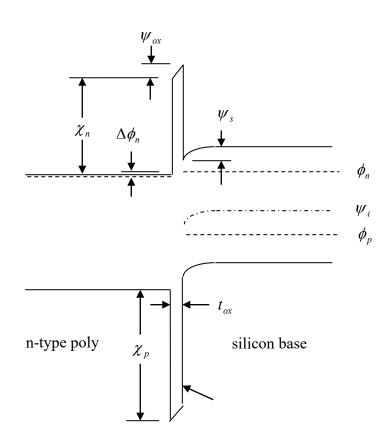
□ There is time for one more PV technology leap prior to steady state market.

Let's make sure it is a good one...

Founded in 2020 as a spin-off of SunPower Corporation, Maxeon leverages almost 40 years of experience.


Maxeon is a public company listed on NASDAQ (MAXN).

COMPANY AT A GLANCE


Headquarters	Singapore	
2023 revenues	+1,12 B\$	
Employees	Approx. 3,900	
Experience	Technology leader in the solar industry since 1985	
Global reach	100+ Global Markets 1,900+ patents	
Customer segments	Residential Commercial Power Plants	
Channels to market	~1,700 Sales & Installation Partners	
Customer-facing brands	SunPower Brand in most of the world Maxeon Brand in U.S. and Japan markets	
2023 volume	+2.8 GW shipments	
Number of customers	+1,000,000	
Manufacturing capacity	+3.5 GW + JV offtake	

IBC: Ultimate Single-Junction Silicon Solar Cell Technology

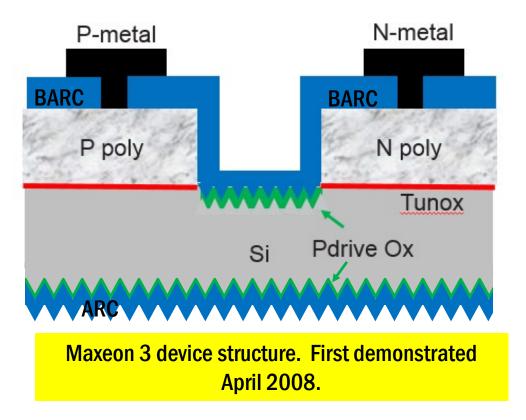
Poly contact

□ Net result: N poly Jo ~ 1 fA/cm2, P poly Jo ~ 6 fA/cm2 contact or non-contact.

Why does it work so well?

- 1. Oxide is buried under poly and annealed never to see moisture or oxygen again.
- *2. Tunnel oxide : Self-limiting growth at polysilicon deposition temperatures.*
- *3. Dopant diffusivity thru SiO*₂ *is just low enough to severely limit out-diffusion.*
- *4. Out-diffusion is not zero as in Hetero-junction a-Si emitter. Insensitivity to surface prep and defects. For example, particles under-diffused.*
- 5. Metal gettering to Npoly.
- 6. Damage in poly is irrelevant, buffers post-process issues.

Redundancy. Multiple levels of protection.


Poly emitter band structure for N-type ✓ *Pile-up of majority carriers at surface*

✓ *Reduction of minority carriers without Auger penalty*

IBC IMPLEMENTATION

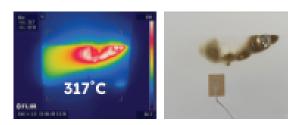
- □ IBC use of polysilicon limited by space charge recombination at butting junction.
- □ Multiple solutions, but most robust is trench process.
- Utilized on Maxeon 3/5/6 products to demonstrate PV industry's first 22 % efficiency modules.
- □ Roadmap: Self-aligned process.

maxeon

Patents: EP 3065184 US 7812250 CN 102057497

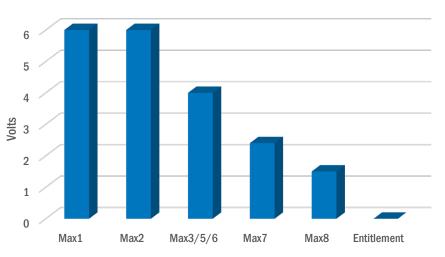
REVERSE BIAS AND SHADING

Conventional cell


Hot spot (>500°C) BPD wear out (open circuit)

52°C 52°C 50°C

Maxeon's latest-generation IBC


Thermal image of a conventional cell with a defect and failed bypass diode Maximum temperature of Maxeon IBC cells at -Isc in reverse bias with no diodes, 20°C ambient

A competitor's IBC

A competitor IBC module with partial shading of a cell and diodes removed resulted in backsheet burning within 30 minutes

Reverse breakdown at -Isc

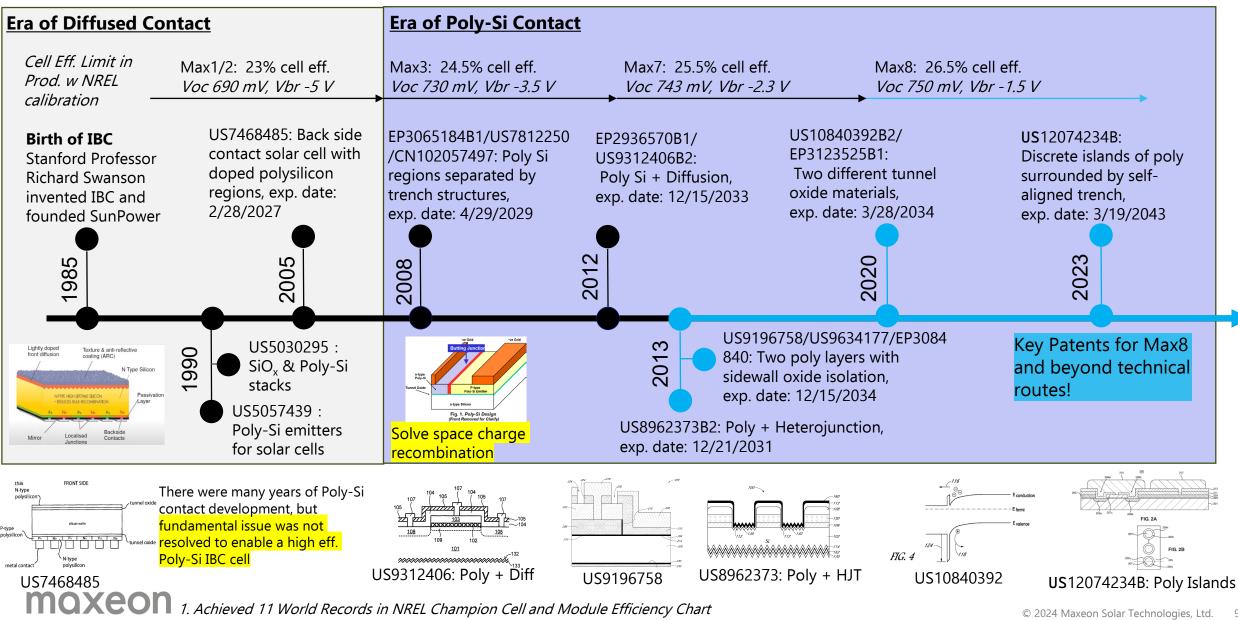
maxeon

□ Max7 reverse voltage at –Isc is -2.3 volts.

□ Shaded conditions increase cell temperature only 30 C

Higher energy yield and fewer reliability issues with local heating.

Compare to conventional front contact with very elevated temperatures during diode failure.


What Happened?

Generally steady progress thru 2008.

□ Sunpower was efficiency, reliability and cost leader thru this period. Then...

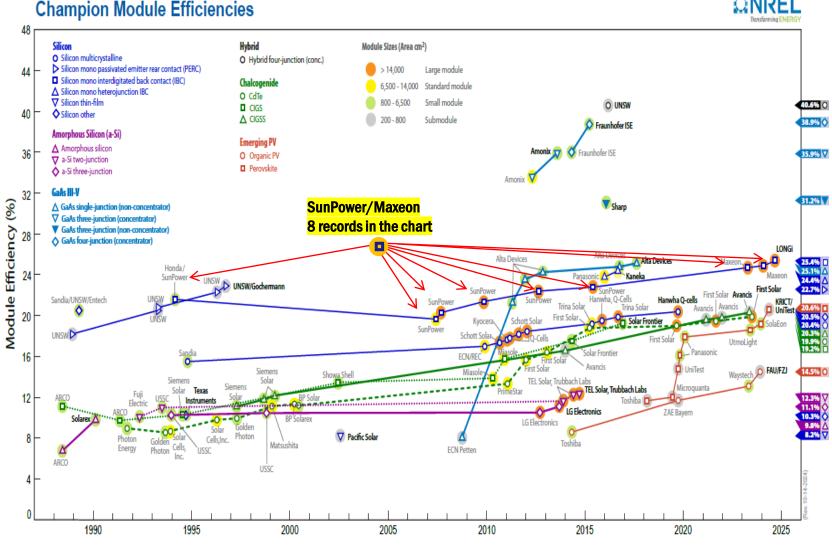
Sunpower	Rest of industry	Consequence
\$40/kg Polysilicon contracts		~ 1 \$B loss
5 inch wafers	M2-M4-M6-G10-G12	High silicon cost, captive supply chain
Specialized inline tools	Large batch	Capex disadvantage, limited growth
High overhead small factories	Local supply chains, China national priority	Persistent high-cost structure
23 % cell in 2008, market introduction 2016	AIBSF → PERC → Topcon	Erosion of efficiency advantage, Time to market delay

Innovation History of Maxeon IBC Solar Cells

2. IBC is the technology beyond TOPCon and is an excellent platform for Tandem

MAXEON 7

- Max7 product was making 24 % efficiency white backsheet modules in 2023.
- □ Champion aperture tested module of 24.9 % in January. 83.08 V/112 cells = 742 mV Voc per cell.
- Max7 stuck in pilot operation due to factors beyond our control
 - 1. Inventory overhang due to industry overcapacity
 - 2. Detention of Maxeon products at US border by CBP
- □ Max8 product anticipated to be 25 % efficiency total area, 750 mV per cell.

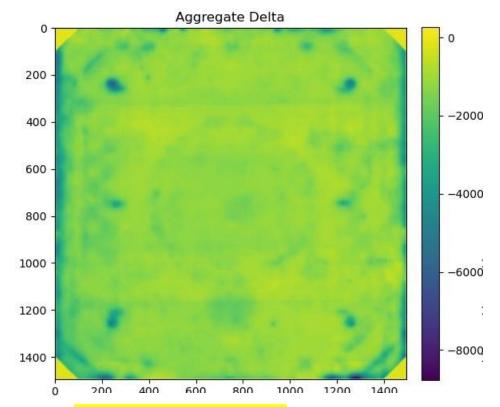

Maxeon Solar Technologies		
mono-Si Module		
Device ID: YMD231221-2A Jan 30, 2024 12:47:59 MT Spectrum:ASTM G173 global EACSS MSR IFV PVCell & Module Performance V V V V V V V V		
$V_{oc} = 83.08 \text{ V} \pm 0.36\%$ $V_{max} = 72.30 \text{ V} \pm 0.36\%$ $I_{sc} = 6.413 \text{ A} \pm 0.67\%$ $I_{max} = 6.103 \text{ A} \pm 0.91\%$ Fill Factor = $82.8\% \pm 1.38\%$ $P_{max} = 441.3 \text{ W} \pm 0.98\%$ Efficiency = $24.9\% \pm 1.00\%$		

maxec

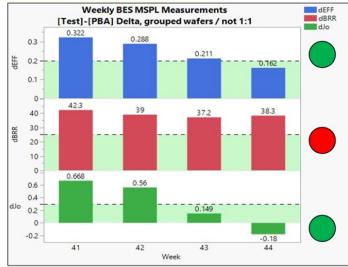
BACK CONTACT INNOVATION LEADERSHIP

Maxeon IBC: Industry-leading efficiency and reliability. Developed in Silicon Valley, California, USA.

- R&D center in San Jose, CA
- 100+ R&D personnel
- >1900 patents, most on structures and manufacturing processes for IBC solar cells and modules
- >20 years experience with high volume **IBC** manufacturing



https://www.nrel.gov/pv/assets/pdfs/champion-module-efficiencies.pdf



YIELD

- Maxeon is largely past the era of metal contaminants limiting bulk lifetime.
- □ Majority of defects are handling related.
- Key method: Aggregate PL data to detect recurring defects
- □ Frequently found in metallization processes
- □ Each process step monitored. Total backend handling losses near 0.2 % efficiency.
- □ Many small defects that need continuous focus.

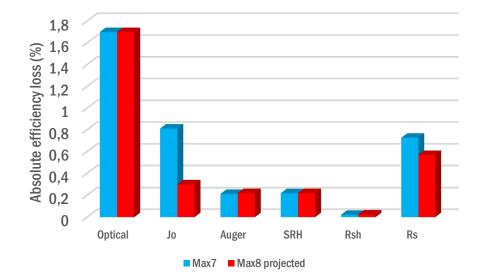
BE Segmentation (Weekly)

MAXEON 8 IBC

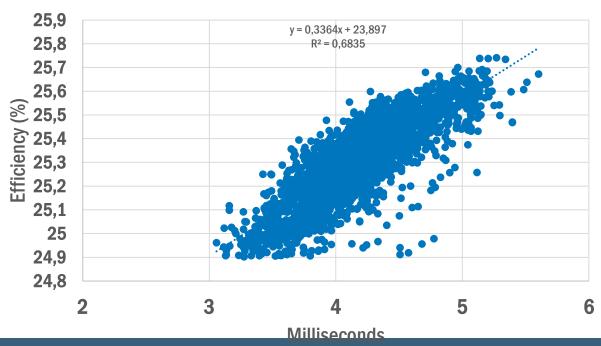
- 25%+ module efficiency
- Low reverse bias
 - Excellent energy yield, passive safety.
- Aluminum Metallization
 - Crack tolerance
 - Lead-free
 - Hail resistant (critical for UPP market)
- 40+ year warranty, lower annual degradation
- Differentiated product in both DG and UPP markets.
- Extensive IBC IP portfolio

moxeor

 Equivalent manufacturing complexity and structural cost to TopCon.



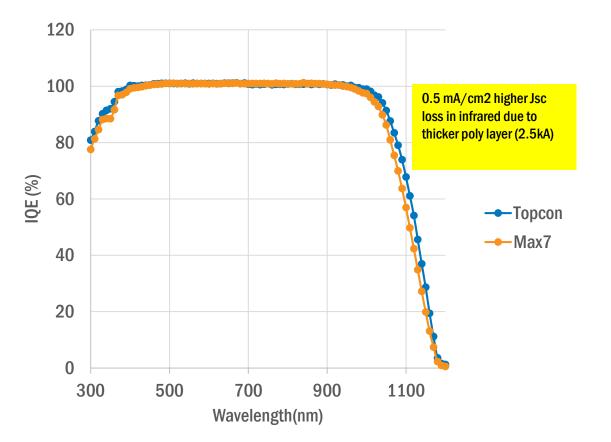
MAXEON 8


- Currently prototyping on Maxeon 7 process with no step additions. Self aligned micro-trench structure.
- Efficiency loss analysis for Maxeon 7 and projected for Maxeon 8 at right.
- Bulk lifetime 20 msec typical no longer significant loss, Jo losses will become small with Max8

□ Anticipate > 26 %

□ Largest remaining loss: poor infrared absorption

Quantitative PL whole wafer Lifetime (ms)


Aluminum wires metallization

- Maxeon 8 Aluminum wire metallization system for cells, stringing, and matrix formation
- 25.3 % demonstrated, higher potential than copper, no solder pad dead space.
- Exceptional crack tolerance with high-strength wire continuously bonded to the cell
- □ Exceeds reliability tests for 40-year warranty
- Metal costs 30% of standard TOPCon systems, Aluminum \$3/kg, Silver \$1000/kg
- Developed in San Jose R&D lab, ongoing pilot line startup in Philippines

MY VISION OF MAXEON IBC ROADMAP

- 1. Zero volts reverse breakdown for best reliability and energy yield.
- 2. Improved free carrier absorption
 - □ Poly thickness currently well above Topcon at 2.5kA. Total available loss estimated at 0.5 %. Likely half accessible.
- 3. Advanced light trapping scheme.
 - □ Only thing that can enable >27 % cell and 26 % efficiency module.

Thank you!

© 2024 Maxeon Solar Technologies, Ltd.